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Abstract
*
–
†
Accurate aircraft landing time predictions 

provide situational awareness for air traffic 
controllers, enable decision support algorithms and 
gate management planning.  This paper presents a 
new approach for estimation of landing times using 
a tree-based ensemble method, namely Quantile 
Regression Forests.  This method is suitable for 
real-time applications, provides robust and accurate 
predictions of landing times, and yields prediction 
intervals for individual flights, which provide a 
natural way of quantifying uncertainty.  The 
approach was tested for arrivals at Dallas/Fort Worth 
International Airport over a range of days with a 
variety of operational conditions. 
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1. INTRODUCTION 

The United States has the largest and most complex 
air transportation system in the world: air traffic 
controllers are responsible for handling safely and 
efficiently more than 5,000 flights at peak times.  While 
traffic growth has been low in the past few years, the 
official 2011 forecast from the Federal Aviation 
Administration (FAA) states that domestic enplanements 
are projected to grow on average 2.5% per year during 
the next twenty years (FAA Fact Sheet, 2011).  To meet 
future demand and avoid gridlock in the sky and on 
airport surfaces, the FAA is currently in the process of 
modernizing the National Airspace System (NAS) 
through several NextGen initiatives.  As part of these 
initiatives, decision support tools (DSTs) are being 
developed to improve airport surface operations.  In this 
paper we will discuss the development of a model for 
prediction of arrival landing times (also known as wheels-
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on time or Estimatd Time of Arrival [ETA]).  Accurate 
predictions of ETA will enable aircraft sequence 
optimization DSTs aimed at decreasing delays, fuel burn 
and emissions.  In addition, accurate aircraft arrival time 
predictions, when displayed on sequence timelines, 
provide valuable situational awareness to air traffic 
controllers. 

NASA’s Traffic Management Advisor (TMA) provides 
ETAs along with many other capabilities (NASA Traffic 
Management Advisor, 2011).  However, this tool, to date, 
has limited deployment and relies on knowledge of 
routing decisions made by controllers to make accurate 
predictions.  TMA ETA predictions are based on detailed 
deterministic physics-based models that incorporate 
airport configuration, winds aloft, aircraft types and 
separation and/or flow rate constraints. However, TMA 
does not explicitly account for uncertainties inherent in 
real operations, such as deviations from standard arrival 
routes.  In addition, aircraft seldom fly at exactly the 
modeled (deterministic) speeds. Because of these and 
other sources of stochasticity, ETAs should really be 
thought of as random variables.  With that in mind, we 
present herein a modeling framework that provides 
predictions of the probability distribution for each 
individual ETA. From the probability distributions, one can 
determine the expected (mean) or median ETA for a 
given flight.  However, other valuable information can be 
extracted, such as quantiles of the distribution and 
prediction intervals, which provide a natural estimate of 
the degree confidence that should be attached to the 
mean or median ETA. We expect that explicit 
quantification of the uncertainties associated with 
individual ETAs will prove valuable for the development 
and implementation of advanced DSTs that have been 
envisioned for NextGen. It has been shown, for example, 
that deterministic aircraft sequence optimization 
algorithms may provide only limited benefits when 
confronted with realistic uncertainties in wheels-on times 
and aircraft taxi times (MIT Lincoln Laboratory, 2012).  
While it may be possible to design sequencing algorithms 
that are robust to the uncertainties, it is first necessary to 
have models that can accurately represent the 
uncertainties. 

The approach presented in this paper is based upon a 
regression tree ensemble method, Quantile Regression 
Forests (QRF) (Meinshausen, 2006) which is an 
extension of Random Forests (RF) (Breiman, 2001).  The 

2.2 

mailto:yglina@ll.mit.edu


method provides accurate point predictions of aircraft 
landing times and, in addition, conditional probability 
distributions for the ETA of each individual flight. 

The paper is organized as follows. In Section II, we 
provide a brief introduction of the RF and QRF 
algorithms. In Section III the wheels-on model specifics 
are provided, with focus on a case study of Dallas/Fort 
Worth International Airport.  Section IV details the results 
of the computational experiments performed to validate 
our approach.  Conclusions are presented in Section V. 

2. METHOD DESCRIPTION 

The method upon which our wheels-on prediction 
algorithm is based is the Quantile Regression Forests 
algorithm (QRF) proposed by Meinshausen 
(Meinshausen, 2006). QRF is an extension of Random 
Forests (RF), which is an ensemble of classification and 
regression trees (CART) (Breiman et al., 1984). The 
basic strategy of CART is to partition a sample of data 
using binary rules to split parent nodes in such a way that 
the child nodes are more homogenous than the parent 
nodes. CART can be applied in a classification or a 
regression context and can handle very high-dimensional 
data sets. CART models have the advantage of 
interpretability, especially for relatively small trees. The 
major disadvantage of CART is its instability. A small 
change in the training sample can result in substantial 
changes in the predictor tree. This can result in poor 
predictive accuracy when the model is applied to new 
data that is independent of the training data on which the 
model was constructed. RF has been designed to 
overcome this fundamental limitation. It uses randomly 
generated CART predictors as weak learners in an 
ensemble learner.  

Let (xi, yi), i = 1, …, N be the training data. The 
predictor variable vector xi can be comprised of real-
valued and/or categorical variables. We will assume that 
the response yi is real-valued, as we are concerned 
herein with regression problems. In CART, the prediction 
of a tree given the new predictor variable vector X=x is 

                                  
 
   ,            

where θ represents the parameters (split points) defining 
how the tree is constructed and wi(x,θ) are weights such 
that    wi(x,θ) > 0 if the observation xi is in the same 
terminal node as  x and wi(x,θ) = 0 otherwise. The 
weights are normalized so that they sum to 1. 
Specifically, if L(x,θ) is the leaf (i.e., terminal node) in 
which x lands, then 

                 wi(x,θ) = 
             

                 
 .                (1) 

In equation (1),              = 1 if an only if    is in the 
leaf        and the denominator is the total number of 
training points that are in this leaf. 

RF consists of a collection of CART predictors T(x, θk 
), k = 1, … K, where the parameters θk are independent, 
identically distributed  random vectors that determine how 

a tree is constructed and K is the number of trees. The 
RF approach employs two levels of randomization in the 
construction of individual trees: bagging (or bootstrap 
aggregation) (Breiman, 1996) and random selection of a 
subset of predictor variables to be considered for the 
splitting of nodes. The size of the random subset, 
denoted by mtry, is a tuning parameter of the model, 
though results are generally nearly optimal over a wide 
range of this parameter. 

It is important to note that RF has good computational 
performance. Its complexity is of O(K*m*log(m)) during 
training and O(N*K*log(m)) during testing, where K = 
number of trees, N = number of instances.    m = number 
of instances per node (Carrasquilla, 2010). 

For RF the conditional mean E(Y | X = x) is estimated 
as the average prediction over the K trees. Define  

       
 

 
         

 

   
 

so wi is the average of the weights associated with the 
individual trees. Then the (deterministic) RF prediction for  
E(Y | X = x) is  

                                  
 
    .                (2) 

Thus, the prediction is a weighted average over all 
observations and the weights depend on the covariate X 
= x. As shown in (Lin et al., 2006)  the weights wi(x) are 
largest for those i where the conditional distribution of Y 
given X = xi is most similar to the distribution of Y given 
X = x. 

The idea of Meinshausen (Meinshausen, 2006) is that 
one could expect that the weighted observations can be 
used to approximate not only the conditional mean, but 
also the entire conditional distribution  

F(y | X = x) = Prob( Y ≤ y | X = x) = E( I{Y≤y} | X = x) 

where I{Y≤y} is the indicator function that is equal to 1 if Y ≤ 
y and 0 if Y > y. Indeed, a natural estimate of F(y | X = x) 
is the following weighted mean over the observations: 

                                            
 
                

The expression above is simply an analog of equation (2) 
for the estimate of the conditional mean. This is the QRF 
prediction for conditional distributions.  

Given the estimate of the conditional distribution, it is 
then straightforward to extract estimates of the 
conditional median, higher order moments,  conditional 
quantiles and prediction intervals of the form [Q (x), 
Q (x)] can readily be extracted, where Q (x) is the -
quantile for Y given X = x.  For example, a 90% 
prediction interval is [Q0.05(x),Q0.95(x)]. 

The width of this prediction interval can vary 
considerably with x, and the narrower the interval, the 
greater the reliability of the prediction.  Thus, QRF offers 
a meaningful way in which to attach a measure of 
confidence to individual predictions. 



3. DFW CASE STUDY 

The case study presented in this paper is for 
Dallas/Fort Worth International Airport (DFW). The airport 
layout is shown schematically in Figure 1.  

 
Figure 1: Dallas/Fort Worth airport operates multiple 
runways serving 19 airlines across 5 terminals. 

 

DFW handles about 1,800 operations per day and is 
the third busiest airport in the United States when ranked 
by scheduled enplanements on U.S. airlines (U.S. 
Bureau of Transportation Statistics, 2011).  The majority 
of the flights land or depart from the four parallel runways 
located around the central terminal area. The airport 
usually operates either in southflow or northflow 
configurations, depending on the prevalent winds. In 
southflow operations, the inner runways (17R and 18L) 
are typically used for departures, while the outer runways 
(17C, 18R, 13R, 17L and 13L) are typically used for 
arrivals. The surveillance tracks for southflow operations 
at DFW are shown in the statistical heat map in Figure 2. 
There are clear statistical flight path patterns observable 
in the figure, along with examples of behaviors that are 
quite difficult to predict. For example, there are parallel 
arrival tracks from the north for those flights landing on 
runways 18R, 17C and 17L and northwest tracks for 
arrivals landing on 13R. However, even these 
characteristic patterns have a large amount of variability. 
For example, there are elliptical tracks that are indicative 
of aircraft that were required to wait in a holding pattern 
before landing.  

Several data sources were used for analysis of DFW 
operations. ASDI (Aircraft Situation Display to Industry) 
data was used to obtain latitude, longitude and altitude 
for each aircraft. ASDI has two sampling rates: within 60 
nautical miles (NM) of the airport the aircraft are 
observed every 20 seconds, while outside of the range, 
locations are reported every 60 seconds. Spline 
interpolation and low-pass filtering were used to post-
process the data to reduce noise. High resolution ASDE-
X (Airport Surface Detection Equipment, Model X) data 
with update frequency of 1 second was used to derive 
wheels-on times for individual arrivals. ASPM (Aviation 
System Performance Metrics) throughput data was used 
to determine the runways used for operations.  

 

Figure 2: ASDE-X heat map of surveillance tracks for 
DFW operations for 1/3 day (log color scale) shows 
complexity of arrival trajectories, vectoring, and 
holding patterns. 

 

The target variable used in the analysis was the 
Estimated Time of Arrival which is defined as the time 
when the aircraft crosses the landing runway threshold. 
Aircraft were observed at 60NM, 50NM, 40NM, 30NM, 
20NM, 10NM and 3NM with a +/-1NM tolerance.  The 
following predictor variables associated with the aircraft 
track data were used to construct training/testing 
exemplars: Euclidean distance from aircraft to the center 
of airport, Latitude/Longitude, Heading, Altitude, and 
Speed, as well as Track Start Location (latitude/longitude 
of the first observed point in ASDI track, most frequently 
at the airport of origin) and Sample Times (time past 
since/before aircraft is observed at 60NM from airport 
center, sampled at regular intervals of 15 seconds, at 10 
reverse-chronological samples from each observation 
distance).  The following additional predictor variables 
were used since they affect airport operations: Time of 
Day, Weather (Visual vs. Instrument Meteorological 
Conditions flag), Runway Availability (per-runway 
indicator functions, derived from ASPM throughput data). 
We did not use aerial congestion information in the 
construction of our data set for simplicity and 
independence of each data point; however, we realize 
that we may be able to improve our estimate further by 
including this information. 

One of the outputs of the RF algorithm is its estimate 
of relative importance for each predictor variable. Figure 
3 shows the RF-based feature importance ranking. As 
can be seen in the figure, the shortest-path distance 
between the aircraft’s current position and the airport 
center is the dominant predictor variable.  Altitude is also 
found to be important, but time of day (ToD) is relatively 
unimportant. 



 

Figure 3: RF-based relative importance feature 
ranking for DFW ETA model shows variable 
groupings (by sample times) and individual variable 
utility. 

 
Our data analysis showed that for some flights 

distance to the airport does not always decrease 
monotonically.  This is the effect of tromboning, where 
aircraft must loop around the airport to make their final 
approach.  The impact of this effect on prediction 
uncertainty is observable in the uncertainty histogram for 
10NM (Figure 8).  Such cases will appear more than 
once at particular distances (10NM, 3NM) and are 
indexed with a subscript (e.g., 102) in this paper.  This 
data processing approach is amenable to on-line 
implementation, as it uses a fixed number of features for 
the regression task, regardless of the position of the 
aircraft in the track.  However, we expect that the 
inclusion of such data, usually considered outliers in 
other approaches, will somewhat reduce the accuracy of 
our predictions.   

4. RESULTS 

The data used for the computational experiments 
presented in this section spanned the period of five days 
(04/06/2011, 04/07/2011, 04/09/2011, 04/27/2011, and 
06/02/2011).  During those days, the airport operated in 
southflow runway configuration and the operating 
conditions were visual except on 04/07/2011 which had 
instrument meteorological conditions early in the 
morning (before 9am) and between noon and 1pm.  

A total of 4011 unique cases were identified and 
separated randomly into 67% (2674 cases) training and 
33% (1337 cases) testing data points. The Quantile 
Regression Forests algorithm was tested against this 
data set. The QRF algorithm was evaluated with the 
quantiles (0.05, 0.5, 0.95) to extract 90% prediction 
intervals, as well as an estimate of the median time until 
wheels-on.   

Figures 4 and 5 summarize the performance of the 
QRF algorithm in predicting the ETA.  Although we do not 
possess a large amount of TMA performance data, QRF 
point prediction accuracies appear comparable to those 
of TMA. 

 
Figure 4: QRF Mean Absolute Errors of time-to-
wheels-on estimates as function of distance to 
center of airport show overall performance and its 
improvement as aircraft approach runway. 
 

 

Figure 5: QRF error quantiles for 60-80NM range 
show excellent prediction characteristics even for 
aircraft at the edge of the surveillance region. 

 

As described above, QRF also enables the 
estimation of prediction intervals.  Figures 6 a) and b) 
show that the 90% prediction interval widths decrease as 
these arrivals near the landing runway.  Note that the 
90% prediction interval for the flight represented in 
Figure 6a) has a width of about 4 minutes 60 nm out, 
while at the same distance away, the 90% prediction 
interval for the flight represented by Figure 6b) is 
approximately 6 minutes.  Thus the ETA for the first flight 
can be considered more predictable than that of the 
second flight at a distance of 60 nm from the runway.  In 
fact, the prediction intervals for the first flight remain 
narrower than those for the second flight all the way into 
the runway, with the exception being at around 30 nm, 
where the prediction intervals have comparable widths.  
We believe that a closer examination of the differences 
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between prediction intervals for different flights could 
lead to valuable operational insights and suggest the 
inclusion of new predictor variables that could improve 
model accuracy. 

 
 

a) 

 
b) 
 

Figure 6: Two distinct prediction interval estimates 
of arrival time.  Both the arrival time estimates and 
the prediction interval envelopes vary significantly at 
various points on approach trajectory.  Note the non-
monotonic decrease of the width of the prediction 
interval in (a), inflecting at 40NM. 

 

The distributions of the widths of the 90% prediction 
intervals provided by the QRF algorithm are shown in 
Figure 7 and Figure 8.  As was explained in Section I, 
such uncertainty quantification is important for advanced 
decision support tools that have been envisioned for 
NextGen, such as aircraft sequence optimization, where 
failure to account for uncertainties can severely limit the 
benefits delivered. 

 
 

Figure 7: Prediction Interval Widths at 60NM 
encompass the entirety of approach trajectories.  At 
this point the distribution of the 90% prediction 
interval widths is rather broad, reflecting primarily 
the diversity in approach trajectories and the 
resulting uncertainty in actual wheels-on times.  
 

 
 
Figure 8: At 10NM, the prediction intervals are 
clearly separated into those aircraft taking a direct 
path into the runway (low uncertainty) vs. those 
tromboning / going around (more uncertainty). 
 

5. CONCLUSIONS AND FUTURE WORK 

This paper presented recent work on the problem of 
Estimated Time of Arrival, which is an important sub-
problem in the Air Traffic Control decision support 
domain.  During our algorithmic trials, we have 
experimented with several Machine Learning approaches 
of the regression tree ensemble variety. In addition to 
producing high-fidelity predictions, these algorithms also 
deliver sufficiently high computational performance to be 
implemented in a real-time system. Such approaches 
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also benefit from being readily adaptable to operation in 
different environments; thus, we would expect 
comparable performance at different airports.  As we 
have demonstrated, Quantile Regression Forests are 
especially promising, given the need for not only accurate 
point predictions of ETAs, but also a method for 
quantifying uncertainty.  It is worth noting that the same 
technique that we propose here for ETA at the runway 
can be used to predict ETA for waypoints / fixes along the 
track, thereby improving en-route prediction of overall 
ETA, and allowing actions such as weather-related 
corridor reroutes to happen more efficiently. 

We are currently investigating the use of additional 
features in the model, such as weather information and 
airspace/tarmac congestion variables; we expect that the 
inclusion of such variables will lead to increased accuracy 
of point predictions of ETAs, as well as tighter prediction 
intervals. 
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